BASIC ELECTRICITY 101

Kevin Booker, Executive Director State Electrical Division of Nebraska

Review some typical hazards associated with electricity and learn how to mitigate the hazards.

OBJECTIVES

In the United States, electrical hazards are ranked number 6 among all causes of work-related deaths. The following drawing shows how circuit breakers access the incoming power:

SINGLE PHASE ELECTRIC PANEL

	WATTAGE SELCTION BOXES			
APPLIANCE	AVERAGE RUNN	NG WATTS	AVERAGE STARTING W	ATTS
AM/FM RADIO	175		175	
TELEVISION SET	300		300	
(5) 100 W. LIGHT BULBS	500		500	
(10) 100 W. LIGHT BULBS	1000		1000	
REFRIGERATOR, 1/4 HP	600		1950	
FREEZER, 1/4 HP	600		1200	
1/3 HP FURNACE FAN	800		1600	
1/3 HP SUMP PUMP, CODE G	800		1600	
1/2 HP SUMP PUMP, CODE G	1200	225	3600	
1/4 HP GARAGE DOOR OPERATOR	600		1200	
MICROWAVE OVEN	750	_	1500	
ELECTRIC WATER HEATER	5000		5000	
COMPUTER SYSTEM: CPU, MONITOR, LASER PRINTER	1500		1500	
DISHWASHER, 1/6 HP	500		1000	
PORTABLE ELECTRIC HEATER			1500	
UPS SYSTEM	2000		2500	
ELECTRIC FRY PAN	1400		1400	
AIR CONDITIONER 12,000 BTU (1 HP ELECTRIC MOTOR)	1900		7600	
AIR CONDITIONER 24,000 BTU (2 HP ELECTRIC MOTOR)	2800		11200	
AIR CONDITIONER 32,000 BTU (2.5 HP ELECTRIC MOTOR)	3500		14000	
AIR CONDITIONER 40,000 BTU (3 HP ELECTRIC MOTOR)	5000	S. J.	20000	
1 HP WATER PUMP, CODE G	1920		5760	
2 HP WATER PUMP, CODE G	2500	2	7500	
3/4 HP WATER PUMP, CODE L	1700		6800	
1-1/2 HP WATER PUMP, CODE L	2400		9600	
1/4 HP ATTIC FAN, CODE G	600		1200	
ELECT. CLOTHES DRYER, 1/4 HP	6000		8000	
GAS CLOTHES DRYER, 1/4 HP	750		2100	
ELECTRIC RANGE 6" ELEMENT	1200		1200	
ELECTRIC RANGE 8" ELEMENT	2000		2000	
WASHING MACHINE WITH 1/3 HP MOTOR	800	~	1600	

So a 2000 watt UPS will draw how many amps? 2000/120 = 16.66 amps

A standard 20 amps outlet is designed to carry 80%, that would be 16 amps.

How much additional load will this circuit handle?

I = V/R

Outlet polarity

Neutral-

White wire connects to silver screw on neutral side Black wire connects to brass screw on hot side

Hot

Ground Bare copper wire

connects to green screw

NEC 110.13. <u>Mounting and Cooling of</u> <u>Equipment.</u>

This requirement is always in dispute, it seems. Cramming equipment into an overcrowded arrangement to maximize revenue per square foot sounds like a really good idea until that equipment starts failing left and right, or the whole place just burns down.

NATIONAL ELECTRICAL CODE

Do YOU push the test button on GFCIs and AFCIs monthly?

It's HARD to remember without calendaring the task! NEC 110.3. <u>Examination, Identification,</u> <u>and Use of Equipment.</u> This section gives 8 requirements for examination in part (A). In (B), it says "Listed or Labeled equipment shall be installed and used in accordance with any instructions included in the Listing or Labeling."

In other words, use the product as intended. Unauthorized modifications void the Listing and expose the modifier to civil, and potentially criminal, litigation and liability. Back in 2005 the CPSC (Consumer Product Safety Commission) went to the electrical manufacturers of GFCI's and asked them to develop self testing devices.

The original scope was that the device would shut down if it did not pass the self test and hence create the safety that these devices are there to provide.

Section 1926.416(e)(1) provides that "worn or frayed electrical cords or cables shall not be used." Superficial nicks or abrasions those that only slightly penetrate the outer jacket of a flexible cord, and do not permit the cord to bend more in that area than in the rest of the cord — do not normally render a cord "worn or frayed." Therefore, there is no need to repair or replace such a cord.

OSHA STANDARDS

AMPACITY AND WIRE INSULATION

Wire Size	Ampacity for	Ampacity for	Maximum
AWG	Type TW &	Type THHN	Amp
	UF		Ratings*
#14	20	25	15*
#12	25	30	20*
#10	30	40	30*

*According to the electrical code, the overcurrent protection shall not exceed 15A for #14, 20A for #12, or 30A for #10

(However, insulation is a factor in locations above 86° F)

WIRE AND CIRCUIT BREAKER SIZING FOR MOTOR LOADS

Total Unit	Circuit Breaker	Wire Size
Amps	Amps	
0 - 12	15	#14
13 - 16	20	#12
17 – 24	30	#10
25 - 31	40	#8
33 - 48	60	#6

HAZARDS and RISKS

when working with

What is the BEST WAY TO PREVENT THE HAZARD of electricity?

<u>AVOID</u> energized circuits - the safest way!

THINK before taking Action

THINK

about the **Risks** and **Hazards**

OPTIONS

Do you have options like:

LOTO (Lockout/Tagout)

PROTECTION

Are you wearing PPÉ? (Personal Protective Equipment)

WHAT are the HAZARDS and RISK\$?

Shock
 Arc Flash & Arc Blast
 Fire Ignition

SHOCK AND ITS EFFECTS

Immediate:

- 1. Muscle contraction
- 2. Vital organs damaged
- 3. Tingling
- 4. Pain
- 5. Breathing
- 6. Disorientation
- 7. Dizziness
- 8. Possible death

SHOCK AND ITS EFFECTS

Long Term:

- 1. Memory Loss
- 2. Nervous disorders
- 3. Chemical imbalances
- 4. Damage to vital organs
- 5. Sometimes fatal

EFFECT OF CURRENT ON THE BODY

MEN

- Perception Threshold
 0.001 Amps (1 mA)
- Painful Shock
 0.009 Amps (9 mA)
- Cannot Let-Go Level0.010 Amps (10 mA)
- Ventricular Fibrillation
 .100 Amps (100 mA)
- Heart Failure0.5 Amps (500 mA)
- ► Organ Burn
 - 1.5 Amps (1500 mA)

WOMEN

- Perception Threshold
 0.0007 Amps (0.7 mA)
- Painful Shock0.006 Amps (6 mA)
- Cannot Let-Go Level
 0.010 Amps (10 mA)
- Ventricular Fibrillation.100 Amps (100 mA)
- ► Heart Failure
 - 0.5 Amps (500 mA)
- Organ Burn
 1.5 Amps (1500 mA)

TWO TYPES OF BURNS FROM SHOCK

Surface Burns:

- Caused by entrance and exit of electrical currents through the body
- Can be caused by a very small amount of current
- 1st degree to 3rd degree

ARC FLASH & BLAST RELATIVE TO THE HUMAN BODY:

- A 2nd degree burn threshold, or a 'just curable burn threshold,' is skin temperature raised to 175°F for 0.1 second.
- A 3rd degree burn threshold, or incurable burn threshold,' is skin temperature raised to 200°F for 0.1 second.
- Eardrum damage > 720 psf
- Lung damage > 17⁄28 psf

TWO TYPES OF BURNS FROM SHOCK

Internal Tissue Burns:

- Caused by current flowing through organs of the body
- Caused by currents in excess of 1.5 amps
- 4th degree (internal)
- Internal organs/
- Typically Fatal

PROTECTION FROM ABNORMAL CONDITIONS

- NFPA 70E
- OSHA
- Electrical Safety Procedures Manual
- Electrical Safety Training

Equipment Labeling

Refer to NFPA 70E for minimum PPE requirements.

☑ BRADY_® #99453 Y4103145

Equipment Labeling

Hazard Category _

BRADY #121133 BRADYID.COM

Questions?

